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PREFACE 
Providing the theory of digital communication systems, this textbook prepares senior undergraduate 
and graduate students for the engineering practices required in the real word. 

With this textbook, students can understand how digital communication systems operate in practice, 
learn how to design subsystems, and evaluate end-to-end performance. 

The book contains many examples to help students achieve an understanding of the subject. The 
problems are at the end of the each chapter follow closely the order of the sections. 

The entire book is suitable for one semester course in digital communication. 

All materials for teaching texts were drawn from sources listed in References. 
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7 PERFORMANCE ANALYSIS OF DIGITAL MODULATIONS 

7.1 GOALS OF THE COMMUNICATIONS SYSTEM DESIGNER  
System trade-offs are fundamental to all digital communication designs. The goals of the designer may 
include any of the following:  

1. to maximize transmission bit rate R;  
2. to minimize probability of bit error 𝑃𝑃𝐵𝐵 ;  
3. to minimize required power, or equivalently, to minimize required bit energy to noise power 

spectral density 𝐸𝐸𝑏𝑏
𝑁𝑁0

 ;  

4. to minimize required system bandwidth B;  
5. to maximize system utilization, that is, to provide reliable service for a maximum number of 

users with minimum delay and with maximum resistance to interference;  
6. to minimize system complexity, computational load, and system cost. A system designer may 

seek to achieve all these goals simultaneously.  
 
However, goals 1 and 2 are clearly in conflict with goals 3 and 4; they call for simultaneously 
maximizing R, while minimizing 𝑃𝑃𝐵𝐵 , 𝐸𝐸𝑏𝑏

𝑁𝑁0
, and B. There are several constraints and theoretical 

limitations that necessitate the trading off of any one system requirement with each of the others: 
 

• The Nyquist theoretical minimum bandwidth requirement 
• The Shannon-Hartley capacity theorem (and the Shannon limit) 
• Government regulations (e.g., frequency allocations) 
• Technological limitations (e.g., state-of-the-art components) 
• Other system requirements (e.g., satellite orbits) 

 
Some of the realizable modulation and coding trade-offs can best be viewed as a change in operating 
point on one of two performance planes. These planes will be referred to as the error probability plane 
and the bandwidth efficiency plane, and they are described in the following sections. 
 

7.2 ERROR PROBABILITY PLANE 

Figure 7.1 illustrates the family of 𝑃𝑃𝐵𝐵  versus 𝐸𝐸𝑏𝑏
𝑁𝑁0

 curves for the coherent detection of orthogonal 

signaling (Figure 7.1 a)) and multiple phase signaling (Figure 7.1 b)). The modulator uses one of its 
𝑀𝑀 =  2𝑘𝑘  waveforms to represent each k-bit sequence, where M is the size of the symbol set. Figure 
7.1 a) illustrates the potential bit error improvement with orthogonal signaling as k (or M) is increased. 
For orthogonal signal sets, such as orthogonal frequency shift keying (FSK) modulation, increasing 
the size of the symbol set can provide an improvement in 𝑃𝑃𝐵𝐵, or a reduction in the 𝐸𝐸𝑏𝑏

𝑁𝑁0
 required, at the 

cost of increased bandwidth. Figure 7.1 b) illustrates potential bit error degradation with 
nonorthogonal signaling as k (or M) increases. For nonorthogonal signal sets, such as multiple phase 
shift keying (MPSK) modulation, increasing the size of the symbol set can reduce the bandwidth 
requirement, but at the cost of a degraded 𝑃𝑃𝐵𝐵, or an increased 𝐸𝐸𝑏𝑏

𝑁𝑁0
 requirement. We shall refer to these 

families of curves (Figure 7.1 a) or b) as error probability performance curves, and to the plane on 
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which they are plotted as an error probability plane. Such a plane describes the locus of operating 
points available for a particular type of modulation and coding. For a given system information rate, 
each curve in the plane can be associated with a different fixed minimum required bandwidth; 
therefore, the set of curves can be termed equibandwidth curves. As the curves move in the direction 
of the ordinate, the required transmission bandwidth increases; as the curves move in the opposite 
direction, the required bandwidth decreases. Once a modulation and coding scheme and an available 
𝐸𝐸𝑏𝑏
𝑁𝑁0

 are determined, a particular point in the error probability plane characterizes system operation.  

 

Figure 7.1 Bit error probability versus 𝐸𝐸𝑏𝑏
𝑁𝑁0

 for coherently detected M-ary signaling: a) Orthogonal signaling, b) Multiple phase 
signaling. 

Possible trade-offs can be viewed as changes in the operating point on one of the curves or as changes 
in the operating point from one curve to another curve of the family. These trade-offs are seen in 
Figure 7.1 a) and b) as changes in the system operating point in the direction shown by the arrows. 
Movement of the operating point along line 1, between points a and b, can be viewed as trading off 
between 𝑃𝑃𝐵𝐵 and 𝐸𝐸𝑏𝑏

𝑁𝑁0
 performance (with W fixed). Similarly, movement along line 2, between points c 

and d, is seen as trading 𝑃𝑃𝐵𝐵 versus B (with 𝐸𝐸𝑏𝑏
𝑁𝑁0

 fixed). Finally, movement along line 3, between points e 

and f, illustrates trading W versus 𝐸𝐸𝑏𝑏
𝑁𝑁0

 (with 𝑃𝑃𝐵𝐵 fixed). Movement along line 1 is effected by increasing 

or decreasing the available  𝐸𝐸𝑏𝑏
𝑁𝑁0

. This can be achieved, for example, by increasing transmitter power, 

which means that the trade-off might be accomplished simply by "turning a knob," even after the 
system is configured. However, the other trade-offs (movement along line 2 or line 3) involve some 
changes in the system modulation or coding scheme, and therefore need to be accomplished during the 
system design phase. The advent of software radios will even allow changes to a system's modulation 
and coding by programmable means. 
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7.3 NYQUIST MINIMUM BANDWIDTH  
Every realizable system having some nonideal filtering will suffer from intersymbol interference (ISI)-
the tail of one pulse spilling over into adjacent symbol intervals so as to interfere with correct 
detection. Nyquist showed that the theoretical minimum bandwidth (Nyquist bandwidth) needed for 
the baseband transmission of 𝐵𝐵𝑠𝑠 symbols per second without ISI is  𝑅𝑅𝑠𝑠

2
 hertz. This is a basic theoretical 

constraint, limiting the designer's goal to expend as little bandwidth as possible. In practice, the 
Nyquist minimum bandwidth is expanded by about 10% to 40%, because of the constraints of real 
filters. Thus, typical baseband digital communication throughput is reduced from the ideal 
2 𝑏𝑏𝑦𝑦𝑛𝑛𝑏𝑏𝑜𝑜𝑙𝑙𝑏𝑏/𝑏𝑏/𝐻𝐻𝐻𝐻 to the range of about 1,8 𝑏𝑏𝑜𝑜 1,4 𝑏𝑏𝑦𝑦𝑛𝑛𝑏𝑏𝑜𝑜𝑙𝑙𝑏𝑏/𝑏𝑏/𝐻𝐻𝐻𝐻. From its set of M symbols, the 
modulation or coding system assigns to each symbol a k-bit meaning, where 𝑀𝑀 =  2𝑘𝑘 . Thus, the 
number of bits per symbol can be expressed as 𝑘𝑘 =  log2 𝑀𝑀, and the data rate or bit rate R must be k 
times faster than the symbol rate 𝐵𝐵𝑠𝑠, as expressed by the basic relationship 
 

R = k𝐵𝐵𝑠𝑠 𝑜𝑜𝑎𝑎 𝐵𝐵𝑠𝑠 =
𝐵𝐵
𝑘𝑘

=
𝐵𝐵

log2 𝑀𝑀
 (7.1) 

 

For signaling at a fixed symbol rate, Equation 7.1 shows that, as k is increased, the data rate R is 
increased. In the case of MPSK, increasing k, thereby results in an increased bandwidth efficiency R/B 
measured in bits/s/Hz. For example, movement along line 3, from point e to point f in Figure 7.1 b), 
represents trading 𝐸𝐸𝑏𝑏

𝑁𝑁0
 for a reduced bandwidth requirement. In other words, with the same system 

bandwidth, one can transmit MPSK signals at an increased date rate and hence at an increased  𝑅𝑅
𝑊𝑊

. 

7.4 SHANNON-HARTLEY CAPACITY THEOREM 
Shannon showed that the system capacity C of a channel perturbed by additive white Gaussian noise 
(AWGN) is a function of the average received signal power S, the average noise power N, and the 
bandwidth B. The capacity relationship (Shannon-Hartley theorem) can be stated as 

C = B log2 �1 +
𝑆𝑆
𝑁𝑁
� (7.2) 

  

When B is in hertz and the logarithm is taken to the base 2, as shown, the capacity is given in 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝑏𝑏. 
It is theoretically possible to transmit information over such a channel at any rate R, where 𝐵𝐵 ≤ 𝐶𝐶, 
with an arbitrarily small error probability by using a sufficiently complicated coding scheme. For an 
information rate 𝐵𝐵 >  𝐶𝐶, it is not possible to find a code that can achieve an arbitrarily small error 
probability.  Shannon's work showed that the values of S, N, and B set a limit on transmission rate, not 
on error probability. Shannon used Equation 7.2 to graphically exhibit a bound for the achievable 
performance of practical systems. This plot, shown in Figure 7.2, gives the normalized channel 
capacity 𝐶𝐶

𝐵𝐵
 in bits/s/Hz as a function of the channel signal-to-noise ratio (SNR). A related plot. shown 

in Figure 7.3, indicates the normalized channel bandwidth B/C in Hz/bits/s as a function of SNR in the 
channel. is sometimes used to illustrate the power-bandwidth tradeoff inherent in the ideal channel. 
However, it is not a pure trade-off because the detected noise power is proportional to bandwidth: 

N = N0𝐵𝐵 (7.3) 
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Figure 7.2 Normalized channel capacity versus channel SNR. 

 

Substituting Equation  7. 3 into Equation 7.2 and rearranging terms yields 

C
𝐵𝐵

= log2 �1 +
𝑆𝑆
𝑁𝑁0𝐵𝐵

� (7.4) 

For the case where transmission bit rate is equal to channel capacity, R = C, we can use the identity to 
write 

S
𝑁𝑁0𝐶𝐶

=
E𝑏𝑏
𝑁𝑁0

 (7.5) 

 

Hence, we can modify Equation 7.4 as follows: 

C
𝐵𝐵

= log2 �1 +
E𝑏𝑏
𝑁𝑁0

�
𝐶𝐶
𝐵𝐵
�� (7.6) 

 

2
C
𝐵𝐵 = 1 +

E𝑏𝑏
𝑁𝑁0

�
𝐶𝐶
𝐵𝐵
� (7.7) 

 

E𝑏𝑏
𝑁𝑁0

=
𝐵𝐵
𝐶𝐶
�2

C
𝐵𝐵 − 1� (7.8) 
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Figure 7.3 Normalized channel bandwidth versus channel SNR. 

Figure 7.4 is a plot of B
𝐶𝐶
 versus E𝑏𝑏

𝑁𝑁0
 in accordance with Equation 7.8. The asymptotic behavior of this 

curve as C
𝐵𝐵
→ 0  or (or B

𝐶𝐶
→ ∞) is discussed in the next section. 

7.4.1 Shannon Limit 

There exists a limiting value of  E𝑏𝑏
𝑁𝑁0

 below, which there can be no error-free communication at any 

information rate. Using the identity 

lim
𝑥𝑥→0

(1 + 𝑥𝑥)
1
𝑥𝑥 = 𝑎𝑎 

We can calculate the limiting value of  E𝑏𝑏
𝑁𝑁0

 as follows: Let 

𝑥𝑥 =
E𝑏𝑏
𝑁𝑁0

�
C
𝐵𝐵
� (7.5) 

Then, from Equation 7.6, 

C
𝐵𝐵

= x log2(1 + 𝑥𝑥)
1
𝑥𝑥 (7.6) 
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And  

1=E𝑏𝑏
𝑁𝑁0

log2(1 + 𝑥𝑥)
1
𝑥𝑥 (7.7) 

  
In the limit, as C

𝐵𝐵
→  0, we get  

E𝑏𝑏
𝑁𝑁0

=
1

log2 𝑎𝑎
= 0,693 (7.8) 

  
Or in decibels  

E𝑏𝑏
𝑁𝑁0

= −1,6dB (7.9) 

 

 

Figure 7.4 Normalized channel bandwidth versus channel E𝑏𝑏
𝑁𝑁0

. 

This value of E𝑏𝑏
𝑁𝑁0

 is called the Shannon limit. On Figure 7.1 a) the Shannon limit is the P𝐵𝐵 versus E𝑏𝑏
𝑁𝑁0

 

curve corresponding to 𝑘𝑘 → ∞. The curve is discontinuous, going from a value of P𝐵𝐵 = 1
2
 to  P𝐵𝐵 = 0 at 

E𝑏𝑏
𝑁𝑁0

= −1,6 𝑡𝑡𝐵𝐵 . It is not possible in practice to reach the Shannon limit, because as k increases without 

bound, the bandwidth requirement and the implementation complexity increases without bound. 
Shannon's work provided a theoretical proof for the existence of codes that could improve the P𝐵𝐵 
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performance, or reduce the E𝑏𝑏
𝑁𝑁0

 required, from the levels of the uncoded binary modulation schemes to 

levels approaching the limiting curve. For a bit error probability of 10−5 , binary phase-shift-keying 
(BPSK) modulation requires an  E𝑏𝑏

𝑁𝑁0
 of 9.6 dB (the optimum uncoded binary modulation). Therefore, 

for this case, Shannon's work promised the existence of a theoretical performance improvement of 
11.2 dB over the performance of optimum uncoded binary modulation, through the use of coding 
techniques. Today, most of that promised improvement (as much as 10 dB) is realizable with turbo 
codes. Optimum system design can best be described as a search for rational compromises or trade-
offs among the various constraints and conflicting goals. The modulation and coding trade-off, that is, 
the selection of modulation and coding techniques to make the best use of transmitter power and 
channel bandwidth, is important, since there are strong incentives to reduce the cost of generating 
power and to conserve the radio spectrum. 

7.5 BANDWIDTH-EFFICIENCY PLANE 

Using Equation 7.6, we can plot normalized channel bandwidth 𝐵𝐵
𝐶𝐶
 in 𝐻𝐻𝐻𝐻/𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝑏𝑏 versus E𝑏𝑏

𝑁𝑁0
, as shown in 

Figure 7.4. Here, with the abscissa taken as E𝑏𝑏
𝑁𝑁0

, we see the true power-bandwidth trade-off at work. It 

can be shown [5] that well designed systems tend to operate near the "knee" of this power-bandwidth 
tradeoff curve for the ideal (R = C) channel. Actual systems are frequently within 10 dB or less of the 
performance of the ideal. The existence of the knee means that systems seeking to reduce the channel 
bandwidth they occupy or to reduce the signal power they require must make an increasingly 
unfavorable exchange in the other parameter. For example, from Figure 7.4, an ideal system operating 
at an E𝑏𝑏

𝑁𝑁0
 of 1.8 dB and using a normalized bandwidth of 0.5 Hz/bits/s would have to increase E𝑏𝑏

𝑁𝑁0
 to 20 

dB to reduce the bandwidth occupancy to 0.1 Hz/bits/s. Trade-offs in the other direction are similarly 
inequitable.  

Using Equation 7.8, we an also plot 𝐶𝐶
𝐵𝐵

 versus E𝑏𝑏
𝑁𝑁0

. This relationship is shown plotted on the 𝑅𝑅
𝐵𝐵

 versus E𝑏𝑏
𝑁𝑁0

 

plane in Figure 7.5. We shall denote this plane as the bandwidth-efficiency plane. The ordinate 𝑅𝑅
𝐵𝐵

 is a 
measure of how much data can be communicated in a specified bandwidth within a given time; it 
therefore reflects how efficiently the bandwidth resource is utilized. The abscissa is E𝑏𝑏

𝑁𝑁0
, in units of 

decibels. For the case in which R = C in Figure 7.5, the curve represents a boundary that separates a 
region characterizing practical communication systems from a region where such communication 
systems are not theoretically possible. Like Figure 7.2, the bandwidth-efficiency plane in Figure 7.5 
sets the limiting performance that can be achieved by practical systems. Since the abscissa in Figure 
7.5 is E𝑏𝑏

𝑁𝑁0
 rather than SNR, Figure 7.5 is more useful for comparing digital communication modulation 

and coding trade-offs than is Figure 7.2. Note that Figure 7.5 illustrates bandwidth efficiency versus E𝑏𝑏
𝑁𝑁0

 

for single-carrier systems. For multiple-carrier systems, bandwidth efficiency is also a function of 
carrier spacing (which depends on the modulation type). The trade-off becomes how closely can the 
carriers be spaced (thereby improving bandwidth efficiency) without suffering an unacceptable 
amount of adjacent channel interference (ACI). 
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Figure 7.5 Bandwidth-efficiency plane. 

7.5.1 Bandwidth Efficiency of MPSK and MFSK Modulation 

On the bandwidth-efficiency plane of Figure 7.5 are plotted the operating points for coherent MPSK 
modulation at a bit error probability of 10-5. We assume Nyquist (ideal rectangular) filtering at 
baseband, so that the minimum double-sideband (DSB) bandwidth at an intermediate frequency (IF) is 
𝐵𝐵𝐼𝐼𝑑𝑑 = 1

𝑇𝑇
,  where T is the symbol duration. Thus using (Equation 7.1) the bandwidth efficiency is 

𝑅𝑅
𝐵𝐵

= log2 𝑀𝑀, where M is the symbol set size. For realistic channels and waveforms, the performance 
must be reduced to account for the bandwidth increase required to implement realizable filters. Notice 
that for MPSK modulation. 𝑅𝑅

𝐵𝐵
 increases with increasing M. Notice also that the location of the MPSK 

points indicates that BPSK (M = 2) and quaternary PSK or QPSK (M = 4) require the same E𝑏𝑏
𝑁𝑁0

. That is, 

for the same value of E𝑏𝑏
𝑁𝑁0

, QPSK has a bandwidth efficiency of 2 bits/s/Hz, compared to 1 bit/s/Hz for 
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BPSK. This unique features stems from the fact that QPSK is effectively a composite of two BPSK 
signals transmitted on orthogonal components of the carrier. 

Also plotted on the bandwidth-efficiency plane of Figure 7.5 are the operating points for noncoherent 
orthogonal MFSK modulation, at a bit error probability of 10-5. We assume that the IF transmission 

bandwidth is 𝐵𝐵𝐼𝐼𝑑𝑑 = 𝑀𝑀
𝑇𝑇

, and thus using Equation 7.1, the bandwidth efficiency is 𝑅𝑅
𝐵𝐵

= log2 𝑀𝑀
𝑀𝑀

. Notice that 

for MFSK modulation, 𝑅𝑅
𝐵𝐵

  decreases with increasing M. Notice also that the position of the MFSK 
points indicates that BFSK (M = 2) and quaternary FSK (M = 4) have the same bandwidth efficiency, 
even though the former requires greater E𝑏𝑏

𝑁𝑁0
 for the same error probability. The bandwidth efficiency 

varies with the modulation index (tone spacing in hertz divided by bit rate). Under the assumption that 
an equal increment of bandwidth is required for each MFSK tone the system uses, it can be seen that 
for M = 2, the bandwidth efficiency is l bit/s/2 Hz or  1

2
 and for M = 4, similarly, the 𝑅𝑅

𝐵𝐵
 is 2 bits/s/4 Hz 

or 1
2
. Thus binary and 4-ary orthogonal FSK are curiously characterized by the same value of  𝑅𝑅

𝐵𝐵
.  

Operating points for coherent quadrature amplitude modulation (QAM) are also plotted in Figure 7.5. 
Of the modulations shown, QAM is clearly the most bandwidth efficient. 

7.5.2 Analogies Between Bandwidth-Efficiency and Error-Probability Planes 

The bandwidth-efficiency plane in Figure 7.5 is analogous to the error-probability plane in Figure 7.1. 
The Shannon limit of the Figure 7.1 plane is analogous to the capacity boundary of the Figure 7.5 
plane. The curves in Figure 7.1, were referred to as equibandwidth curves. In Figure 7.5, we can 
analogously describe equi-error-probability curves for various modulation and coding schemes. The 
curves, labeled 𝑃𝑃𝐵𝐵1, 𝑃𝑃𝐵𝐵2, and 𝑃𝑃𝐵𝐵3, are hypothetical constructions for some arbitrary modulation and 
coding scheme; the 𝑃𝑃𝐵𝐵1  curve represents the largest error probability of the three curves, and the 
𝑃𝑃𝐵𝐵3curve represents the smallest. The general direction in which the curves move for improved 𝑃𝑃𝐵𝐵 is 
indicated on the figure. Just as potential trade-offs among 𝑃𝑃𝐵𝐵 , E𝑏𝑏

𝑁𝑁0
, and B were considered for the error-

probability plane, the same trade-offs can be considered on the bandwidth efficiency plane. The 
potential trade-offs are seen in Figure 7.5 as changes in operating point in the direction shown by the 
arrows. Movement of the operating point along line 1 can be viewed as trading 𝑃𝑃𝐵𝐵 versus  E𝑏𝑏

𝑁𝑁0
, with 𝑅𝑅

𝐵𝐵
 

fixed. Similarly, movement along line 2 is seen as trading 𝑃𝑃𝐵𝐵 versus B (or 𝑅𝑅
𝐵𝐵

), with E𝑏𝑏
𝑁𝑁0

 fixed. 

Finally, movement along line 3 illustrates trading B (or  𝑅𝑅
𝐵𝐵

) versus E𝑏𝑏
𝑁𝑁0

, with 𝑃𝑃𝐵𝐵 fixed. In Figure 7.5, as 

in Figure 7.1, movement along line 1 can be effected by increasing or decreasing the available E𝑏𝑏
𝑁𝑁0

. 

However, movement along line 2 or line 3 requires changes in the system modulation or coding 
scheme. The two primary communications resources are the transmitted power and the channel 
bandwidth. In many communication systems, one of these resources may be more precious than the 
other, and hence most systems can be classified as either power limited or bandwidth limited. In 
power-limited systems, coding schemes can be used to save power at the expense of bandwidth. 
whereas in bandwidth-limited systems, spectrally efficient modulation techniques can be used to save 
bandwidth at the expense of power. 
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7.6 MODULATION AND CODING TRADE-OFFS  
Figure 7.6 is useful in pointing out analogies between the two performance planes, the error-
probability plane of Figure 7.1 and the bandwidth-efficiency plane of Figure 7.5. Figure 7.6 a) and b) 
represent the same planes as Figure 7.1 and Figure 7.5, respectively. They have been redrawn as 
symmetrical by choosing appropriate scales. In each case, the arrows and their labels describe the 
general effect of moving an operating point in the direction of the arrow by means of appropriate 
modulation and coding techniques. The notations G, C, and F stand for the trade-off considerations 
"Gained or achieved," "Cost or expended," and "Fixed or unchanged," respectively. The parameters 
being traded are 𝑃𝑃𝐵𝐵 ,𝐵𝐵, 𝑅𝑅

𝐵𝐵
  and 𝑃𝑃 (𝑏𝑏𝑜𝑜𝑤𝑤𝑎𝑎𝑎𝑎 𝑜𝑜𝑎𝑎 𝑆𝑆

𝑁𝑁
). Just as the movement of an operating point toward the 

Shannon limit in Figure 7.6 a) can achieve improved 𝑃𝑃𝑠𝑠 or reduced required transmitter power at the 
cost of bandwidth, so too movement toward the capacity boundary in Figure 7.6 b) can improve 
bandwidth efficiency at the cost of increased required power or degraded 𝑃𝑃𝑠𝑠.  

 

Figure 7.6 Modulation/coding trade-offs: a) Error probability plane, b) Bandwidth efficiency plane. 

Most often, these trade-offs are examined with a fixed 𝑃𝑃𝑠𝑠 (constrained by the system requirement) in 
mind. Therefore, the most interesting arrows are those having bit error probability (marked 𝐹𝐹:𝑃𝑃𝐵𝐵). 
There are four such arrows on Figure 7.6 two on the error probability plane and two on the bandwidth-
efficiency plane. Arrows marked with the same pattern indicate correspondence between the two 
planes. System operation can be characterized by either of these two planes. The planes represent two 
ways of looking at some of the key system parameters; each plane highlights slightly different aspects 
of the overall design problem. The error probability plane tends to be most useful with power-limited 
systems, whereas when we move from curve to curve, the bandwidth requirements are only inferred, 
while the bit error probability is clearly displayed. The bandwidth-efficiency plane is generally more 
useful for examining bandwidth-limited systems; here, as we move from curve to curve, the bit-error 
probability is only inferred, but the bandwidth requirements are explicit.  

The two system trade-off planes, error probability and bandwidth efficiency, have been presented 
heuristically with simple examples (orthogonal and multiple phase signaling) to provide some insight 
into the design issues of trading-off error probability, bandwidth and power. The ideas are useful for 
most modulation and coding schemes, with the following caveat. For some codes or combined 
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modulation and coding schemes, the performance curves do not move as predictably as those for the 
examples chosen here. The reason has to do with the error-correcting capability and bandwidth 
expansion features of the particular code. Examine the curves characterizing the two BCH codes, (127, 
64) and (127, 36). It should be clear from their relative positions that the (127, 64) code manifests 
greater coding gain than the (127, 36) code. This violates our expectations since, within the same 
block size, the latter code has greater redundancy (requires more bandwidth expansion) than the 
former. Also, we consider codes that provide coding gain without any bandwidth expansion. 
Performance curves for such coding schemes will also behave differently from the curves of most 
modulation and coding schemes discussed so far. 

7.7 DEFINING, DESIGNING, AND EVALUATING DIGITAL 
COMMUNICATION SYSTEMS 

This section is intended to serve as a "road map" for outlining typical steps that need to be considered 
in meeting the bandwidth, power, and error-performance requirements of a digital communication 
system. The criteria for choosing modulation and coding schemes, based on whether a system is 
bandwidth limited or power limited, are reviewed for several system examples. We will emphasize the 
subtle but straightforward relationships that exist when transforming from data-bits to channel-bits to 
symbols to chips.  

The design of any digital communication system begins with a description of the channel (received 
power, available bandwidth, noise statistics and other impairments, such as fading), and a definition of 
the system requirements (data rate and error performance). Given the channel description, we need to 
determine design choices that best match the channel and meet the performance requirements. An 
orderly set of transformations and computations has evolved to aid in characterizing a system's 
performance. Once this approach is understood, it can serve as the format for evaluating most 
communication systems. In subsequent sections, we examine three system examples, chosen to 
provide a representative assortment: a bandwidth-limited uncoded system, a power-limited uncoded 
system, and a bandwidth-limited and power-limited coded system. In this section, we deal with real-
time communication systems, where the term coded (or uncoded) refers to the presence (or absence) of 
error-correction coding schemes involving the use of redundant bits and expanded bandwidth. Two 
primary communications resources are the received power and the available transmission bandwidth. 
In many communication systems, one of these resources may be more precious than the other, and 
hence most systems can be classified as either bandwidth limited or power limited. In bandwidth-
limited systems, spectrally efficient modulation techniques can be used to save bandwidth at the 
expense of power, whereas in power-limited systems, power-efficient modulation techniques can be 
used to save power at the expanse of bandwidth. In both bandwidth- and power-limited systems, error-
correction coding (often called channel coding) can be used to save power or to improve error 
performance at the expense of bandwidth. Trellis-coded modulation (TCM) schemes have been used 
to improve the error performance of bandwidth-limited channels without any increase in bandwidth. 

7.7.1 M-ary Signaling 

For signaling schemes that process k bits at a time, the signaling is called M-ary. Each symbol in an 
M-ary alphabet can be related to a unique sequence of k bits, where 

𝑀𝑀 = 2𝑘𝑘  𝑜𝑜𝑎𝑎 𝑘𝑘 = log2 𝑀𝑀 (7.10) 
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and where M is the size of the alphabet. In the case of digital transmission, the term symbol refers to 
the member of the M-ary alphabet that is transmitted during each symbol duration 𝑘𝑘𝑠𝑠.  In order to 
transmit the symbol, it must be mapped onto an electrical voltage or current waveform. Because the 
waveform represents the symbol, the terms symbol and waveform are sometimes used 
interchangeably. Since one of M symbols or waveforms is transmitted during each symbol duration 𝑘𝑘𝑠𝑠, 
the date rate 𝐵𝐵 can be expressed as 

𝐵𝐵 =
𝑘𝑘
𝑘𝑘𝑠𝑠

=
log2 𝑀𝑀
𝑘𝑘𝑠𝑠

 [𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝑏𝑏] (7.11) 

 

From Equation 7.11, we write that the effective duration 𝑘𝑘𝑏𝑏 of each bit in terms of the symbol duration 
𝑘𝑘𝑠𝑠 or the symbol rate 𝐵𝐵𝑠𝑠 is 

𝑘𝑘𝑏𝑏 =
1
𝐵𝐵

=
𝑘𝑘𝑠𝑠
𝑘𝑘

=
1
𝑘𝑘𝐵𝐵𝑠𝑠

  (7.12) 

 

Then, using Equations 7.10 and 7.12, we can express the symbol rate 𝐵𝐵𝑠𝑠 in terms of the bit rate R, as 
was presented earlier: 

𝐵𝐵𝑠𝑠 =
𝐵𝐵

log2 𝑀𝑀
  (7.13) 

 

From Equations 7.11 and 7.12, it is seen that any digital scheme that transmits 𝑘𝑘 = log2 𝑀𝑀 bits in 𝑘𝑘𝑠𝑠, 
seconds, using a bandwidth of B [Hz], operates at a bandwidth efficiency of 

𝐵𝐵
𝐵𝐵

=
log2 𝑀𝑀
𝐵𝐵𝑘𝑘𝑠𝑠

=
1
𝐵𝐵𝑘𝑘𝑏𝑏

 [𝑏𝑏𝑏𝑏𝑏𝑏/𝑏𝑏/𝐻𝐻𝐻𝐻] (7.14) 

 

where 𝑘𝑘𝑏𝑏 is the effective time duration of each data bit. 

7.7.2 Bandwidth-Limited Systems 

From Equation 7.14, it can be seen that any digital communication system will become more 
bandwidth efficient as its 𝐵𝐵𝑘𝑘𝑏𝑏 product is decreased. Thus, signals with small 𝐵𝐵𝑘𝑘𝑠𝑠 products are often 
used with bandwidth-limited systems. For example, the Global System for Mobile (GSM) 
Communication uses Gaussian minimum shift keying (GMSK) modulation having a 𝐵𝐵𝑘𝑘𝑏𝑏  product 
equal to 0,3 Hz/bit/s, where 𝐵𝐵 the 3-dB bandwidth of a Gaussian filter.  

For uncoded bandwidth-limited systems, the objective is to maximize the transmitted information rate 
within the allowable bandwidth, at the expense of E𝑏𝑏

𝑁𝑁0
 (while maintaining a specified value of bit-error 

probability 𝑃𝑃𝐵𝐵). On the bandwidth-efficiency plane of in Figure 7.5 are plotted the operating points for 
coherent M-ary PSK (MPSK) at 𝑃𝑃𝐵𝐵 = 10−5. We shall assume Nyquist (ideal rectangular) filtering at 
baseband, so that, for MPSK, the required double-sideband (DSB) bandwidth at an intermediate 
frequency (IF) is related to the symbol rate by  

𝐵𝐵 =
1
𝑘𝑘𝑠𝑠

= 𝐵𝐵𝑠𝑠  (7.15) 
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where 𝑘𝑘𝑠𝑠 is the symbol duration and 𝐵𝐵𝑠𝑠 is the symbol rate. The use of Nyquist filtering results in the 
minimum required transmission bandwidth that yields zero intersymbol interference; such ideal 
filtering gives rise to the name Nyquist minimum bandwidth. Note that the bandwidth of 
nonorthogonal signaling, such as MPSK or MQAM, does not depend on the density of the signaling 
points in the constellation but only on the speed of signaling. When a phasor is transmitted, the system 
cannot distinguish as to whether that signal arose from a sparse alphabet set or a dense alphabet set. It 
is this aspect of nonorthogonal signals that allows us to pack the signaling space densely and thus 
achieve improved bandwidth efficiency at the expense of power. From Equations 7.14 and 7.15, the 
bandwidth efficiency of MPSK modulated signals using Nyquist filtering can be expressed as 

𝐵𝐵
𝐵𝐵

= log2 𝑀𝑀  [𝑏𝑏𝑏𝑏𝑏𝑏/𝑏𝑏/𝐻𝐻𝐻𝐻]  (7.16) 

 

The MPSK points plotted in Figure 7.5 confirm the relationship shown in Equation 7.16. Note that 
MPSK modulation is a bandwidth-efficient scheme. As M increases in value, 𝑅𝑅

𝐵𝐵
 also increases. From 

Figure 7.5, it can be verified that MPSK modulation can achieve improved bandwidth efficiency at the 
cost of increased E𝑏𝑏

𝑁𝑁0
 • Many highly bandwidth-efficient modulation schemes have been investigated, 

but such schemes are beyond the scope of this book.  

Two regions, the bandwidth-limited region and the power-limited region, are shown on the bandwidth-
efficiency plane of Figure 7.5. Notices that the desirable trade-offs associated with each of these 
regions are not equitable. For the bandwidth-limited region, large 𝑅𝑅

𝐵𝐵
 is desired; however, as E𝑏𝑏

𝑁𝑁0
 is 

increased, the capacity boundary curve flattens out and ever-increasing amounts of additional E𝑏𝑏
𝑁𝑁0

 are 

required to achieve improvement in 𝑅𝑅
𝐵𝐵

. A similar relationship is at work in the power-limited region. 

Here a savings in E𝑏𝑏
𝑁𝑁0

 is desired, but the capacity boundary curve is steep; to achieve a small reduction 

in required E𝑏𝑏
𝑁𝑁0

,  requires a large reduction in 𝑅𝑅
𝐵𝐵

. 

7.7.3 Power-Limited Systems 

For the case of power-limited systems in which power is scarce but system bandwidth is available 
(e.g., a space communication link), the following trade-offs, which can be seen in Figure 7.1 a), are 
possible: (1) improved 𝑃𝑃𝐵𝐵 at the expense of bandwidth for a fixed E𝑏𝑏

𝑁𝑁0
 ; or (2) reduction in E𝑏𝑏

𝑁𝑁0
 at the 

expense of bandwidth for a fixed 𝑃𝑃𝐵𝐵. A "natural" modulation choice for a power-limited system is M-
ary FSK (MFSK). Plotted on Figure 7.5 are the operating points for noncoherent orthogonal MFSK 
modulation at 𝑃𝑃𝐵𝐵 = 10−5 . For such MFSK, the IF minimum bandwidth, assuming minimum tone 
spacing, is given by  

𝐵𝐵 =
𝑀𝑀
𝑘𝑘𝑠𝑠

= 𝑀𝑀𝐵𝐵𝑠𝑠  (7.17) 

 

where 𝑘𝑘𝑠𝑠 is the symbol duration, and 𝐵𝐵𝑠𝑠 is the symbol rate. With M-ary FSK, the required transmission 
bandwidth is expanded M-fold over binary FSK since there are M different orthogonal waveforms, 
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each requiring a bandwidth of 1
𝑇𝑇𝑠𝑠

. Thus, from Equations 7.14 and 7.17, the bandwidth efficiency of 

noncoherent MFSK signals can be expressed as 

𝐵𝐵
𝐵𝐵

=
log2 𝑀𝑀
𝑀𝑀

 [𝑏𝑏𝑏𝑏𝑏𝑏/𝑏𝑏/𝐻𝐻𝐻𝐻]  (7.18) 

 

Notice the important difference between the bandwidth efficiency�𝑅𝑅
𝐵𝐵
� of MPSK expressed in Equation 

(9.19) and that of MFSK expressed in Equation 7.16. With MPSK, 𝑅𝑅
𝐵𝐵

 increases as the signal 
dimensionality M increases. With MFSK there are two mechanisms at work. The numerator shows the 
same increase in𝑅𝑅

𝐵𝐵
 with larger M, as in the case of MPSK. But the denominator indicates a decrease in 

𝑅𝑅
𝐵𝐵

 with larger M. As M grows larger, the denominator grows faster than the numerator, and thus 𝑅𝑅
𝐵𝐵

 
decreases. The MFSK points plotted in Figure 7.5 confirm the relationship shown in Equation 7.18, 
that orthogonal signaling such as MFSK is a bandwidth-expansive scheme. From Figure 7.5, it can be 
seen that MFSK modulation can be used for realizing a reduction in required E𝑏𝑏

𝑁𝑁0
,  at the cost of 

increased bandwidth.  

It is important to emphasize that in Equations 7.15 and 7.16 for MPSK, and for all the MPSK points 
plotted in Figure 7.5, Nyquist (ideal rectangular) filtering has been assumed. Such filters are not 
realizable. For realistic channels and waveforms, the required transmission bandwidth must be 
increased in order to account for realizable filters. In each of the examples that follow, we consider 
radio channels, disturbed only by additive white Gaussian noise (AWGN) and having no other 
impairments. For simplicity, the modulation choice is limited to constant-envelope types-either MPSK 
or noncoherent orthogonal MFSK. Thus, for an uncoded system, if the channel is bandwidth limited, 
MPSK is selected, and if the channel is power limited, MFSK is selected. Note that, when error-
correction coding is considered, modulation selection is not so simple, because there exist coding 
techniques that can provide power-bandwidth trade-offs more effectively than would be possible 
through the use of any M-ary modulation scheme. 

Note that in the most general sense, M-ary signaling can be regarded as a waveform-coding procedure. 
That is, whenever we select an M-ary modulation technique instead of a binary one, we in effect have 
replaced the binary waveforms with better waveforms-either better for bandwidth performance 
(MPSK), or better for power performance (MFSK). Even though orthogonal MFSK signaling can be 
thought of as being a coded system (it can be described as a first-order Reed-Muller code), we shall 
here restrict our use of the term coded system to refer only to those traditional error-correction codes 
using redundancies, such as block codes or convolutional codes. 

7.7.4 Requirements for MPSK and MFSK Signaling 

The basic relationship between the symbol (or waveform) transmission rate 𝐵𝐵𝑠𝑠, and the data rate R 
was shown in Equation 7.13 to be 

𝐵𝐵𝑠𝑠 =
𝐵𝐵

log2 𝑀𝑀
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Using this relationship together with Equations 7.14 through 7.17, and a given data rate of 𝐵𝐵 =
 9600 𝑏𝑏𝑏𝑏𝑏𝑏/𝑏𝑏 , Table 7.1 has been compiled. The table is a summary of symbol rate, minimum 
bandwidth, and bandwidth efficiency for MPSK and noncoherent orthogonal MFSK, for the values of 
M = 2, 4, 8. 16, and 32. Also included in Table 9.1 are the required values of E𝑏𝑏

𝑁𝑁0
 to achieve a bit-error 

probability of 10−5 for MPSK and MFSK for each value of M shown. These E𝑏𝑏
𝑁𝑁0

 entries were computed 

using relationships that are presented later. The E𝑏𝑏
𝑁𝑁0

 entries corroborate the trade-offs shown in Figure 

7.5. As M increases, MPSK signaling provides more bandwidth efficiency at the cost of increased E𝑏𝑏
𝑁𝑁0

, 

while MFSK signaling allows for a reduction in E𝑏𝑏
𝑁𝑁0

 at the cost of increased bandwidth. The next three 

sections are presented in the context of examples taken from Table 7.1. 

Table 7.1 Symbol Rate, Minimum Bandwidth, Bandwidth Efficiency, and Required E𝑏𝑏
𝑁𝑁0

 for MPSK and Noncoherent 

Orthogonal MFSK Signaling at 9600 bit/s 

M k 
R  

[bit/s] 
𝑹𝑹𝒔𝒔  

[symbol/s] 

MPSK 
Minimum 
Bandwidth 

[Hz] 

MPSK 
𝐵𝐵
𝐵𝐵 

MPSK 
E𝑏𝑏
𝑁𝑁0

 [𝑡𝑡𝐵𝐵] 

𝑃𝑃𝐵𝐵 = 10−5 

Noncoherent 
Orthog MFSK 
Min Bandwidth 

[Hz] 
MFSK 

𝐵𝐵
𝐵𝐵

 

MFSK 
E𝑏𝑏
𝑁𝑁0

 [𝑡𝑡𝐵𝐵] 

𝑃𝑃𝐵𝐵 = 10−5 
2 1 9600 9600 9600 1 9,6 19,200 1/2 13,4 
4 2 9600 4800 4800 2 9,6 19,200 1/2 10,6 
8 3 9600 3200 3200 3 13,0 25,600 1/3 9,1 
16 4 9600 2400 2400 4 17,5 38,400 1/4 8,1 
32 5 9600 1920 1920 5 22,4 61,440 5/32 7,4 
 

7.7.5 Bandwidth-Limited Uncoded System Example 

Suppose we are given a bandwidth-limited AWGN radio channel with an available bandwidth of 
𝐵𝐵 =  4000 𝐻𝐻z. Also, consider that the link constraints (transmitter power, antenna gains, path loss, 

etc.) result in the ratio of received signal power to noise-power spectral density �𝑃𝑃𝑟𝑟
𝑁𝑁0
� being equal to 53 

dB/Hz. Let the required data rate 𝐵𝐵 be equal to 9600 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝑏𝑏, and let the required bit-error performance 
𝑃𝑃𝐵𝐵  be at most 10−5. The goal is to choose a modulation scheme that meets the required performance. 
In general, an error-correction coding scheme may be needed if none of the allowable modulation 
schemes can meet the requirements. However, in this example, we will see that the use of error-
correction coding is not necessary. 

For any digital communication system, the relationship between received power to noise-power 

spectral density �𝑃𝑃𝑟𝑟
𝑁𝑁0
� and received bit-energy to noise power spectral density �E𝑏𝑏

𝑁𝑁0
� to be  

𝑃𝑃𝑟𝑟
𝑁𝑁0

=
E𝑏𝑏
𝑁𝑁0

𝐵𝐵 (7.19) 

 

Solving for E𝑏𝑏
𝑁𝑁0

 in decibels, we obtain 

E𝑏𝑏
𝑁𝑁0

[𝑡𝑡𝐵𝐵] =
𝑃𝑃𝑟𝑟
𝑁𝑁0

− 𝐵𝐵 

= 53 − (10 log10 9600) = 13,2 𝑡𝑡𝐵𝐵 (𝑜𝑜𝑎𝑎 20,89) 
(7.20) 
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Since the required data rate of 9600 bits/s is much larger than the available bandwidth of 4000 Hz, the 
channel can be described as bandwidth limited. We therefore select MPSK as our modulation scheme. 
Recall that we have confined the possible modulation choices to be constant-envelope types: without 
such a restriction, it would be possible to select a modulation type with greater bandwidth efficiency. 
In an effort to conserve power, we next compute the smallest possible value of M, such that the 
symbol rate is at most equal to the available bandwidth of 4000 Hz. From Table 7.1, it is clear that the 
smallest value of M meeting this requirement is M = 8. Our next task is to determine whether the 
required bit-error performance of 𝑃𝑃𝐵𝐵 ≤ 10−5 can be met by using 8-PSK modulation alone, or whether 
it is necessary to additionally use an error-correction coding scheme. It can be seen from Table 7.1. 
that 8-PSK alone will meet the requirements, since the required E𝑏𝑏

𝑁𝑁0
 listed for 8-PSK is less then the 

received E𝑏𝑏
𝑁𝑁0

 that was derived in Equation 7.20. However, imagine that we do not have Table 7.1. Let us 

demonstrate how to evaluate whether or not error-correction coding is necessary. Figure 7.7 shows the 
basic modulator/demodulator (MODEM) block diagram summarizing the functional details of this 
design. At the modulator, the transformation from data bits to symbols yields an output symbol rate 𝐵𝐵𝑠𝑠 
that is a factor (log2 𝑀𝑀) smaller than the input data-bit rate R, as can be seen in Equation 7.13. 
Similarly, at the input to the demodulator, the symbol-energy to noise-power spectral density E𝑏𝑏

𝑁𝑁0
 is a 

factor (log2 𝑀𝑀) larger than  E𝑏𝑏
𝑁𝑁0

, since each symbol is made up of (log2 𝑀𝑀) bits. Because E𝑠𝑠
𝑁𝑁0

 is larger 

than E𝑏𝑏
𝑁𝑁0

 by the same factor that R𝑠𝑠, is smaller than R, we can expand Equation 7.19, as follows: 

𝑃𝑃𝑟𝑟
𝑁𝑁0

=
E𝑏𝑏
𝑁𝑁0

𝐵𝐵 =
E𝑠𝑠
𝑁𝑁0

R𝑠𝑠 

 
(7.21) 

 

Figure 7.7 Basic modulator/demodulator (MODEM) without channel coding. 

The demodulator receives a waveform (in this example, one of M = 8 possible phase shifts) during 
each time interval T𝑠𝑠 . The probability that the demodulator makes a symbol error P𝐸𝐸(𝑀𝑀)  is well 
approximated and we write  
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P𝐸𝐸(𝑀𝑀) ≈ 2𝑄𝑄 ��
2E𝑠𝑠
𝑁𝑁0

sin �
𝜋𝜋
𝑀𝑀
�� 𝑜𝑜𝑜𝑜𝑎𝑎 𝑀𝑀 > 2 

 

(7.22) 

where 𝑄𝑄(𝑥𝑥), the complementary error function, is 

𝑄𝑄(𝑥𝑥) =
1

√2𝜋𝜋
� 𝑎𝑎𝑥𝑥𝑏𝑏
∞

𝑥𝑥

�−
𝑛𝑛2

2
�𝑡𝑡𝑛𝑛 

 

(7.23) 

In Figure 7.6 and all the figures that follow, rather than show explicit probability relationships, the 
generalized notation 𝑜𝑜(𝑥𝑥) has been used to indicate some functional dependence on 𝑥𝑥. 

A traditional way of characterizing communication (power) efficiency or error performance in digital 
systems is in terms of the received  E𝑏𝑏

𝑁𝑁0
 in decibels. This E𝑏𝑏

𝑁𝑁0
 description has become standard practice. 

However, recall that at the input to the demodulator/detector, there are no bits; there are only 
waveforms that have been assigned bit meanings. Thus, the received E𝑏𝑏

𝑁𝑁0
 value represents a 

bitapportionment of the arriving waveform energy. A more precise (but unwieldy) name would be the 
energy per effective bit versus 𝑁𝑁0. To solve for P𝐸𝐸(𝑀𝑀) in Equation 7.22, we first need to compute the 
ratio of received symbol-energy to noise power spectral density, E𝑠𝑠

𝑁𝑁0
. Since, from Equation 7.20, E𝑏𝑏

𝑁𝑁0
=

13,2 𝑡𝑡𝐵𝐵 (𝑜𝑜𝑎𝑎 20,89), and because each symbol is made up of (log2 𝑀𝑀) bits, we compute, with M=8, 

E𝑠𝑠
𝑁𝑁0

= (log2 𝑀𝑀)
E𝑏𝑏
𝑁𝑁0

= 3 ∗ 20,89 = 62,67 

 
(7.24) 

Using the results of Equation 7.24 in Equation 7.23, yields the symbol-error probability, P𝐸𝐸 =
2,2. 10−5. To transform this to bit-error probability. we need to use the relationship between bit-error 
probability P𝐵𝐵 and symbol-error probability P𝐸𝐸 for multiple-phase signaling. We write 

P𝐵𝐵 ≈
P𝐸𝐸

log2 𝑀𝑀
 (𝑜𝑜𝑜𝑜𝑎𝑎 P𝐸𝐸 ≪ 1 ) 

 
(7.25) 

which is a good approximation, when Gray coding is used for the bit-to-symbol assignment. This last 
computation yields 𝑃𝑃𝐵𝐵 = 7,3. 10−6 , which meets the required bit-error performance. Thus, in this 
example, no error-correction coding is necessary and 8-PSK modulation represents the design choice 
to meet the requirements of the bandwidth-limited channel (which we had predicted by examining the 
required E𝑏𝑏

𝑁𝑁0
 values in Table 7.1). 

7.7.6 Power-Limited Uncoded System Example 

Now, suppose that we have exactly the same data rate and bit-error probability requirements as in the 
example of Chapter 7.7.5. However, in this example, let the available bandwidth W be equal to 45 
kHz, and let the available 𝑃𝑃𝑟𝑟

𝑁𝑁0
 be equal to 48 dB/Hz. As before, the goal is to choose a modulation or 

modulation/coding scheme that yields the required performance. In this example, we shall again find 
that error-correction coding is not required. 
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The channel in this example is clearly not bandwidth limited since the available bandwidth of 45 kHz 
is more than adequate for supporting the required data rate of 9600 bits/s. The received E𝑏𝑏

𝑁𝑁0
 is found 

from Equation 7.20, as follows: 

E𝑏𝑏
𝑁𝑁0

[𝑡𝑡𝐵𝐵] = 48 − (10 log10 9600) = 8,2 𝑡𝑡𝐵𝐵 (𝑜𝑜𝑎𝑎 6,61) (7.26) 

Since there is abundant bandwidth but a relatively small amount of E𝑏𝑏
𝑁𝑁0

 for the required bit-error 

probability, this channel may be referred to as power limited. We therefore choose MFSK as the 
modulation scheme. In an effort to conserve power, we next search for the largest possible M such that 
the MFSK minimum bandwidth is not expanded beyond our available bandwidth of 45 kHz. From 
Table 7.1, we see that such a search results in the choice of M = 16, our next task is to determine 
whether the required error performance of 𝑃𝑃𝐵𝐵 ≤ 10−5 can be met by using 16-FSK alone, without the 
use of any error-correction coding. Similar to the previous example, it can be seen from Table 7.1, that 
16-FSK alone will meet the requirements, since the required E𝑏𝑏

𝑁𝑁0
 listed for 16-FSK is less than the 

received E𝑏𝑏
𝑁𝑁0

 that was derived in Equation 7.26. However, imagine again that we do not have Table 7.1. 

Let us demonstrate how to evaluate whether or not error-correction coding is necessary. 

As before, the block diagram in Figure 7.7 summarizes the relationship between symbol rate R𝑠𝑠 and 
bit rate R, and between E𝑠𝑠

𝑁𝑁0
 and E𝑏𝑏

𝑁𝑁0
 , which is identical to each of the respective relationships in the 

previous bandwidth-limited example. In this example, the 16-FSK demodulator receives a waveform 
(one of 16 possible frequencies) during each symbol time interval T𝑠𝑠. For noncoherent MFSK, the 
probability that the demodulator makes a symbol error is approximated by 

P𝐸𝐸(𝑀𝑀) ≤
𝑀𝑀 − 1

2
𝑎𝑎𝑥𝑥𝑏𝑏 �−

E𝑠𝑠
2N0

� (7.27) 

 

To solve for P𝐸𝐸(𝑀𝑀) in Equation 9.27, we need to compute E𝑠𝑠
N0

, as we did in Example 1. Using the 

results of Equation 7.26 in Equation 7.24, with M = 16, we get 

E𝑠𝑠
𝑁𝑁0

= (log2 𝑀𝑀)
E𝑏𝑏
𝑁𝑁0

= 4 ∗ 6,61 = 26,44 (7.28) 

 

Next, we combine the results of Equation 7.28 in Equation 7.27 to yield the symbol-error probability 
P𝐸𝐸 = 1,4. 10−5. To transform this to bit-error probability P𝐵𝐵, we need to use the relationship between 
P𝐵𝐵 and P𝐸𝐸 for orthogonal signaling, given by 

P𝐵𝐵 =
2𝑘𝑘−1

2𝑘𝑘 − 1
P𝐸𝐸 (7.29) 

This last computation yields P𝐵𝐵 = 7,3. 10−6 , which meets the required bit-error performance. Thus, 
we can meet the given specifications for this power-limited channel by using 16-FSK modulation, 
without any need for error-correction coding (which we had predicted by examining the required 
E𝑏𝑏
𝑁𝑁0

 values in Table 7.1). 
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7.8 SOLVED PROBLEMS 
Problem 1 

In some sense, all digital modulation schemes fall into one of two classes with opposite behavior 
characteristics. The first class constitutes orthogonal signaling, and its error performance follows the 
curves shown in Figure 7.1 a). The second class constitutes nonorthogonal signaling (the constellation 
of signal phasors can be depicted on a plane). Figure 7.1 b) illustrates an MPSK example of such 
nonorthogonal signaling. However, any phase/amplitude modulation (e.g., QAM) falls into this second 
class. In the context of Figure 7.1, answer the following questions: 

a) Does error-performance improve or degrade with increasing M, for M-ary signaling?  
b) The choices available in digital communications almost always involves a tradeoff. If error-

performance improves, what price must we pay? 
c) If error-performance degrades, what benefit is exhibited? 

Solution 

a) When examining Figure 7.1, we see that error-performance improvement or degradation 
depends upon the class of signaling in question. Consider the orthogonal signaling in Figure 
7.1 a), where error-performance improves with increased k or M. Recall that there are only 
two fair ways to compare error-performance with such curves. A vertical line can be drawn 
through some fixed value of  𝐸𝐸𝑏𝑏

𝑁𝑁0
  and ask or M is increased, it is seen that 𝑃𝑃𝐵𝐵 is reduced, or, a 

horizontal line can be drawn through some fixed 𝑃𝑃𝐵𝐵 requirement, and ask or M is increased, it 
is seen that the  𝐸𝐸𝑏𝑏

𝑁𝑁0
 requirement is reduced. Similarly, it can be seen that the curves in Figure 

7.1 b) for nonorthogonal signaling such as MPSK, behave in the opposite fashion. Error-
performance degrades ask or M is increased. 

b) In the case of orthogonal signaling, where error performance improves with increasing k of M, 
what is the cost? In terms of the orthogonal signaling we are most familiar with, MFSK, when 
𝑘𝑘 =  1 and 𝑀𝑀 =  2 there are two tones in the signaling set. When 𝑘𝑘 =  2 and 𝑀𝑀 =  4, there 
are four tones in the set. When 𝑘𝑘 =  3 and 𝑀𝑀 =  8. There are eight tones, and so forth. With 
MFSK, only one tone is sent during each symbol time, but the available transmission 
bandwidth consists of the entire set of tones. Hence, as k or M is increased, it should be clear 
that the cost of improved error-performance is an expansion of required bandwidth. 

c) In the case of nonorthogonal signaling, such as MPSK or QAM, where error performance 
degrades as k or M is increased, one might rightfully guess that the tradeoff will entail a 
reduction in the required bandwidth. Consider the following example. Suppose we require a 
data rate of 𝐵𝐵 =  9600 𝑏𝑏𝑏𝑏𝑏𝑏/𝑏𝑏. And, suppose that the modulation chosen is 8-ary PSK. Then, 
using Equation 7.1, we find that the symbol rate is 

𝐵𝐵𝑠𝑠 =
𝐵𝐵

log2 𝑀𝑀
=

9600 𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏�

3 𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑦𝑦𝑛𝑛𝑏𝑏𝑜𝑜𝑙𝑙�
= 3200 𝑏𝑏𝑦𝑦𝑛𝑛𝑏𝑏𝑜𝑜𝑙𝑙 𝑏𝑏𝑏𝑏𝑏𝑏�   

 

If we decide to use 16-ary PSK for this example, the symbol rate would then be 
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𝐵𝐵𝑠𝑠 =
𝐵𝐵

log2 𝑀𝑀
=

9600 𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏�

4 𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑦𝑦𝑛𝑛𝑏𝑏𝑜𝑜𝑙𝑙�
= 2400 𝑏𝑏𝑦𝑦𝑛𝑛𝑏𝑏𝑜𝑜𝑙𝑙 𝑏𝑏𝑏𝑏𝑏𝑏�  

 

 

If we continue in this direction and use 32-ary PSK, the symbol rate becomes 

𝐵𝐵𝑠𝑠 =
𝐵𝐵

log2 𝑀𝑀
=

9600 𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏�

59 𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑦𝑦𝑛𝑛𝑏𝑏𝑜𝑜𝑙𝑙�
= 1920 𝑏𝑏𝑦𝑦𝑛𝑛𝑏𝑏𝑜𝑜𝑙𝑙 𝑏𝑏𝑏𝑏𝑏𝑏�  

 

 

Do you see what happens as the operating point in Figure 7.1 b) is moved along a horizontal 
line from the 𝑘𝑘 =  3 curve to the 𝑘𝑘 =  4 curve. and finally to the 𝑘𝑘 = 5 curve? For a given 
data rate and bit-error probability, each such movement allows us to signal at a slower rate. 
Whenever you hear the words. ''slower signaling rate," that is tantamount to saying that the 
transmission bandwidth can be reduced. Similarly, any case of increasing the signaling rate, 
corresponds to a need for increasing the transmission bandwidth. 

Problem 2 

Suppose 𝑃𝑃𝐵𝐵 = 10−6 is desired for a certain digital data transmission system.  

a) Compare the necessary SNRs for BPSK, DPSK, antipodal PAM for 𝑀𝑀 = 2, 4, 8; and 
noncoherent FSK. 

b) Compare maximum bit rates for an RF bandwidth of 20 kHz. 

Solution 

For part a), we find by trial and error that 𝑄𝑄(4,753) ≈ 10−6 . Biphase-shift keying and antipodal 
PAM for 𝑀𝑀 = 2have the same bit error probability, given by  

𝑃𝑃𝐵𝐵 = 𝑄𝑄��
2𝐵𝐵𝑏𝑏
𝑁𝑁0

� = 10−6 

So that �2𝐸𝐸𝑏𝑏
𝑁𝑁0

= 4,753 or 𝐸𝐸𝑏𝑏
𝑁𝑁0

= (4,753)2

2
= 11,3 = 10,53𝑡𝑡𝐵𝐵. Then for M=4: 

2(4 − 1)
4 log2 4

𝑄𝑄��
6 log2 4
42 − 1

𝐵𝐵𝑏𝑏
𝑁𝑁0
� = 10−6 

𝑄𝑄��0,8
𝐵𝐵𝑏𝑏
𝑁𝑁0
� = 1,333 ∗ 10−6 

Another trial-and-error search gives 𝑄𝑄(4,753) ≈ 1,333 ∗ 10−6  so that �0,8 𝐸𝐸𝑏𝑏
𝑁𝑁0

= 4,695  or 

𝐸𝐸𝑏𝑏
𝑁𝑁0

= (4,495)2

0,8
= 27.55 = 14,4 𝑡𝑡𝐵𝐵.  For M=8 

2(4 − 1)
8 log2 8

𝑄𝑄��
6 log2 8
82 − 1

𝐵𝐵𝑏𝑏
𝑁𝑁0
� = 10−6 
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7
12

𝑄𝑄��
2
7
𝐵𝐵𝑏𝑏
𝑁𝑁0
� = 10−6 

𝑄𝑄��0,268
𝐵𝐵𝑏𝑏
𝑁𝑁0
� = 1,714 ∗ 10−6 

Another trial-and-error search gives 𝑄𝑄(4,642) ≈ 1,714 ∗ 10−6  so that �0,286 𝐸𝐸𝑏𝑏
𝑁𝑁0

= 4,643  or 

𝐸𝐸𝑏𝑏
𝑁𝑁0

= (4,643)2

0,286
= 75,38 = 18,77 𝑡𝑡𝐵𝐵.   

For DPSK, we have> 

1
2
𝑎𝑎−

𝐸𝐸𝑏𝑏
𝑁𝑁0 = 10−6 

𝑎𝑎−
𝐸𝐸𝑏𝑏
𝑁𝑁0 = 2 ∗ 10−6 

𝐵𝐵𝑏𝑏
𝑁𝑁0

=  − ln(2 ∗ 10−6) = 13,12 = 11,18 𝑡𝑡𝐵𝐵 

For coherent FSK, we have 

𝑃𝑃𝐵𝐵 = 𝑄𝑄��
𝐵𝐵𝑏𝑏
𝑁𝑁0
� = 10−6 

So that 

�
𝐵𝐵𝑏𝑏
𝑁𝑁0

= 4,753 𝑜𝑜𝑎𝑎 
𝐵𝐵𝑏𝑏
𝑁𝑁0

= (4,753)2 = 22,59 = 13,54𝑡𝑡𝐵𝐵 

For noncoherent FSK, we have 

1
2
𝑎𝑎−

1
2
𝐸𝐸𝑏𝑏
𝑁𝑁0 = 10−6 

𝑎𝑎−
1
2
𝐸𝐸𝑏𝑏
𝑁𝑁0 = 2 ∗ 10−6 

𝐵𝐵𝑏𝑏
𝑁𝑁0

=  −2 ln(2 ∗ 10−6) = 26,24 = 14,18 𝑡𝑡𝑡𝑡𝐵𝐵 

For b), we use the previously developed bandwidth expressions and results are given in Table. 
The results of Table demonstrate that PAM is a modulation scheme that allows a trade-off 
between power efficiency (in terms of the 𝐸𝐸𝑏𝑏

𝑁𝑁0 
 required for a desired bit-error probability) and 

bandwidth efficiency (in terms of maximum data rate for a fixed bandwidth channel). 
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Modulation 
method 

Required SNR for 
𝑷𝑷𝑩𝑩 = 𝟏𝟏𝟎𝟎−𝟔𝟔 [𝒅𝒅𝑩𝑩] 

R for 
𝑩𝑩𝑹𝑹𝑹𝑹 = 𝟐𝟐𝟎𝟎𝟐𝟐𝟐𝟐𝟐𝟐 [𝟐𝟐𝒃𝒃𝒌𝒌𝒔𝒔] 

BPSK 10,5 10 
DPSK 11,2 10 
Antipodal 4-PAM 14,4 20 
Antipodal 8-PAM 18,8 30 
Coherent FSK, ASK 13,5 8 
Noncoherent FSK 14,2 5 

 

7.9 SUMMARY 

• When dealing with M-ary digital communications systems, with  M ≥ 2  it is important to 
distinguish between a bit and a symbol or character. A symbol conveys log2 M bits.We must 
also distinguish between bit-error probability and symbol-error probability. 

• M-ary schemes based on quadrature multiplexing include QPSK, OQPSK, andMSK. All have 
a bit-error rate performance that is essentially the same as binaryBPSK if precoding is used to 
ensure that only one bit error results from mistaking a given phase for an adjacent phase. 

• Minimum-shift keying can be produced by quadrature modulation or by serial modulation. In 
the latter case,MSKis produced by filtering BPSK with a properly designed conversion filter. 
At the receiver, serial MSK can be recovered by first filtering it with a bandpass matched filter 
and performing coherent demodulation with a carrier at 𝑜𝑜𝑐𝑐 + 1

4
𝑘𝑘𝑏𝑏  (i.e., at the carrier plus a 

quarter data rate). Serial MSK performs identically to quadrature-modulated MSK and has 
advantageous implementation features at high data rates 

• It is convenient to view M-ary data modulation in terms of signal space. Examples of data 
formats that can be considered in this way are M-ary PSK, QAM, and M-ary FSK. For the 
former two modulation schemes, the dimensionality of the signal space stays constant as more 
signals are added; for the latter, it increases directly as the number of signals added. A 
constant-dimensional signal space means signal points are packed closer as the number of 
signal points is increased, thus degrading the error probability; the bandwidth remains 
essentially constant. In the case of FSK, with increasing dimensionality as more signals are 
added, the signal points are not compacted, and the error probability decreases for a constant 
SNR; the bandwidth increases with an increasing number of signals, however. 

• Communication systems may be compared on the basis of power and bandwidth efficiencies. 
A rough measure of bandwidth is null-to-null of the main lobe of the transmitted signal 
spectrum. For M-ary PSK, QAM, and DPSK power efficiency decreases with increasing M 
(i.e., as M increases a larger value of 𝐸𝐸𝑏𝑏

𝑁𝑁0 
is required to provide a given value of bit-error 

probability) and bandwidth efficiency increases (i.e, the larger M, the smaller the required 
bandwidth for a given bit rate). For M-ary FSK (both coherent and noncoherent) the opposite 
is true. This behavior may be explained with the aid of signal space concepts—the signal 
space for M-ary PSK, QAM, and DPSK remains constant at two dimensions versus M (one-
dimensional for 𝑀𝑀 = 2), whereas for M-ary FSK it increases linearly with M. Thus, from a 
power efficiency standpoint the signal points are crowded together more as M increases in the 
former cases, whereas they are not in the latter case. 
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7.10 EXERCISE 
1. An M-ary communication system transmits at a rate of 4000 symbols per second. What is the 

equivalent bit rate in bits per second for 𝑀𝑀 = 4,𝑀𝑀 = 8,𝑀𝑀 = 16,𝑀𝑀 = 32 𝑎𝑎𝑛𝑛𝑡𝑡 𝑀𝑀 = 64 
Generate a plot of bit rate versus log2 𝑀𝑀.  

2. A speech signal is sampled at a rate of 8 KHz, logarithmically compressed and encoded into a 
PCM format using 8 bits per sample. The PCM data is transmitted through an AWGN 
baseband channelvia M-level PAM signaling. Determine the required transmission bandwidth 
when (a) M = 4, (b) M = 8 and (c) M = 16. (Assume rectangular pulses and the zero-to-null 
definition of bandwidth.) 

3. Binary PSK (BPSK) is used for data transmission over an AWGN channel with power spectral 

density 𝑁𝑁0
2

= 10−10  W/Hz. The transmitted signal energy is𝐵𝐵𝑏𝑏 = 𝐴𝐴2𝑇𝑇
2

, where T is the bit 
duration and A is the signal amplitude. Determine the value of A needed to achieve an error 
probability of 10−6, if the data rate is:  

a. 10 Kbit/s 
b. 100 Kbit/s 
c.  1 Mbit/s 

4. You are required to provide a real-time communication system to support 9600 bits/s with a 
required bit-error probability of at most 10−5 within an available bandwidth of 2700 Hz. The 
predetection𝑃𝑃𝑟𝑟

𝑁𝑁0
 is 54.8 dB-Hz. Choose one of two modulation schemes-either MPSK with 

Gray coding or noncoherent orthogonal MFSK. Such that the available bandwidth is not 
exceeded and power is conserved.  

5. A digital communication system transmits data using QAM signaling over a voice-band 
telephone channel at a rate 2400 symbols/s (baud). The additive noise is assumed to be white 
and Gaussian. You are asked to determine the energy-per-bit-to-noise ratio 𝐸𝐸𝑏𝑏

𝑁𝑁0 
 required to 

achieve an error probability of 110−5 for a bit rate equal to:  
a. 4800 bits/s 
b. 9600 bits/s 
c. 19200 bits/s 
d. 31200 bits/s 

6. Assuming that it is desired to transmit information at the rate of R [bits/s], determine the 
required transmission bandwidth of each of the following six communication systems, and 
arrange them in order of bandwidth efficiency, starting from the most bandwidth-efficient and 
ending at the least bandwidth-efficient. 
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